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a b s t r a c t

In magnetic resonance (MR) imaging, image spatial resolution is determined by various instrumental
limitations and physical considerations. This paper presents a new algorithm for producing a high-
resolution version of a low-resolution MR image. The proposed method consists of two consecutive
steps: (1) reconstructs a high-resolution MR image from a given low-resolution observation via solving a
joint sparse representation and nonlocal similarity L1-norm minimization problem; and (2) applies a
sparse derivative prior based post-processing to suppress blurring effects. Extensive experiments on
simulated brain MR images and two real clinical MR image datasets validate that the proposed method
achieves much better results than many state-of-the-art algorithms in terms of both quantitative
measures and visual perception.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Compared with other medical imaging techniques, MR imaging
uses non-ionizing radiation and provides distinct microscopic
chemical and physical information of molecules. However, the
spatial resolution of MR images is limited by various instrumental
limitations (e.g., gradients’ intensity, filter bandwidth) and physi-
cal considerations. The resolution limitation could result in partial
volume effect (PVE), a phenomenon that each pixel in the MR
images could contain more than one material or tissue type. To
reduce PVEs, a common practice is to magnify the images using
standard interpolation techniques. However, interpolation techni-
ques usually do not take into account the fact that a low-resolution
(LR) pixel is actually a weighted average of the high-resolution
(HR) pixels inside it, thus the magnified HR images are typically
featured with blurred edges and tissues.

To overcome this problem, various methods have been pro-
posed [1,5–8,11,12,17–20] so far. Among them, super-resolution
(SR) is one of the most promising methods and receives much
attention in the research community. SR image reconstruction is
the process of recovering a HR image from a single (e.g., [2])
or a set of LR images (e.g., [3]). The essential difference between

single-frame and multi-frame SR image reconstruction is that new
high-frequency information could also be recovered from different
LR frames [4]. In MR image analysis, SR was first used to
reconstruct a HR image by merging multiple LR acquisitions with
subpixel displacements. In [5], Herment et al. reduced total data
acquisition time by merging multiple k-space data. Shilling et al.
[6] improved the resolution and contrast of MR images by fusing
multiple 2D slices with different slice directions. Greenspan et al.
[7] used iterative back-projection and Islamet al. [8] used a
wavelet-based deblurring approach to improve the resolution of
3D MR images.

Though multi-frame SR image reconstruction is theoretically
more promising than single-frame SR image reconstruction, it
suffers many difficulties in real applications, such as subpixel
image registration/acquisition, the increase of computational com-
plexity as frame number increases. On the other hand, many
researches [9,10] have demonstrated that, given a proper prior
image model, single-frame SR image reconstruction can also be as
effective as multi-frame SR image reconstruction. To reconstruct a
HR image from a single MR image, Rousseau [11] used the idea
presented in [9] and proposed a patch-based nonlocal regulariza-
tion framework for brain MR image reconstruction. Manjón et al.
[12] extended the patch-based nonlocal regularization framework
to include a coherence constraint.

Recently, a powerful statistical image modeling technique,
sparse representation [13,14], has been successfully applied in
natural image SR applications [15,16,22]. In MR image analysis,
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however, many efforts have been focused on applying compressed
sensing (CS) [17–20], a technique through which a perfect MR
image reconstruction is possible by only a small subset of k-space
samples that is far less than the Nyquist sampling theorem. Since
these CS-based SR methods [17–20] focus on manipulating k-space
samples, they do have many advantages, e.g., theoretical simplicity
and low computational cost. Nevertheless, they also present some
important drawbacks. For example, recovering high frequency
information in the k-space will inevitably cause visual artifacts
in the image space, thus they need to work in the frequency and
the image space in turn to suppress artifacts [20,21]. On the other
hand, sparse representation based techniques manipulate image
patches in the image space, thus provide much more interpretable
information to human eyes, and more importantly, facilitate
experts to adopt a much more flexible observation model (e.g.,
local motion) and incorporate various image priors. Based on these
considerations, Andrea et al. [21] proposed to reconstruct HR 3D
brain MR image from LR 3D image volumes using overcomplete
dictionaries.

Motivated by the ideas presented in Refs. [11,12,21,36,37], in
this paper, we propose a new algorithm for reconstructing a HR
MR image from a single LR image. The proposed method consists
of two consecutive steps: (1) reconstructs a HR MR image from a
given LR observation via solving a joint sparse representation and
nonlocal similarity L1-normminimization problem; and (2) applies
a sparse derivative prior based post-processing on the recon-
structed HR image to suppress blurring effects.

The rest of the paper is organized as follows. In Section 2, we
give a brief review of SR image reconstruction based on sparse
representation. Sections 3 and 4 present the nonlocal similarity
and sparse derivative prior image model, respectively. Section 5
presents the new algorithm. Extensive experiments on simulated
brain MR images and two real clinical MR image datasets are
conducted in Section 6 to verify the efficiency of our method.
Finally, we provide discussion in Section 7.

2. SR image reconstruction based on sparse representation

In SR image reconstruction, the LR image can be modeled as a
down-sampled version of the HR image which has been blurred,
i.e.,

Y ¼ WZ ð1Þ
where Y is the observed LR image, Z is the original HR image, and
W is a degradation operator representing the blur and down-
sampling operator which operates on Z to yield Y (geometric shift
is not included in W since we focus on the single-frame SR
reconstruction). A maximum a posterior (MAP) estimate of the
unknown HR image Z can be computed as

Ẑ¼ arg max
Z

f log PrðZjYÞg

¼ arg min
Z

‖Y�WZ‖22 � log PrðZÞ� � ð2Þ

where Pr(Z) is the prior image model. Many works have been
contributed to find a good prior image model, and total variation
(TV) [23–26] is one of the most commonly used models. Sparse
representation has also been successfully applied as a prior image
model as well. Given an image Z, the sparse representation
assumes that there exists a sparse vector Λ and a proper learned
dictionary Ψ (each column in Ψ is referred to as an atom), such
that

Z�ΨΛ; s:t: ‖Λ‖0rε ð3Þ
where ε is a predefined threshold to control the sparsity of Λ and
L0-norm ‖U‖0 counts the number of nonzero elements in a vector.

Let Ψh and Ψl are the coupled two dictionaries for the HR and
LR images, respectively. For single-frame SR reconstruction, given
a HR image Z and the corresponding LR image Y, there exists a
sparse vector Λ simultaneously satisfies [15]

Z�ΨhΛ and Y�ΨlΛ; s:t: ‖Λ‖0rε; ð4Þ
With the sparsity prior image model defined in (4), finding the

solution to (1) is equivalent to finding the representation of Z over
Ψh, which can be estimated from its LR observation Y by solving
the following L0-norm minimization problem:

Λ̂¼ arg min
Λ

‖Y�ΨlΛ‖22þλ‖Λ‖0
� � ð5Þ

where λ is a parameter controlling the importance of sparsity
prior. Since L0-norm is nonconvex and solving (5) is NP-hard,
many recent works [13,27] demonstrated that if the coefficients Λ
is sparse enough, the solution to (5) can be efficiently approxi-
mated by solving the following L1-norm minimization problem

Λ̂¼ arg min
Λ

‖Y�ΨlΛ‖22þλ‖Λ‖1
� � ð6Þ

where L1-norm ‖U‖1 calculates the sum of the absolute of each
element in a vector. Notice that (6) is also known as the Lasso in
statistical literature [28].

Once Λ̂ is obtained, Z can then be estimated as

Ẑ¼ΨhΛ̂ ð7Þ
Traditionally, we divide an image into overlapped or non-

overlapped patches, apply (6) and (7) to each image patch and
fuse all the reconstructed HR patches to get the final HR image.
To avoid confusion, we use letters in lowercase or uppercase to
represent an image patch or an entire image throughout this paper
unless otherwise stated. For the convenience of later discussion,
we write the patch-based version of (6) and (7) as follows:

α̂¼ arg min
α

‖y�Ψlα‖22þλ‖α‖1
� � ð8Þ

ẑ¼Ψhα̂ ð9Þ

3. Nonlocal similarity

A critical issue in sparse representation prior is the choice of
dictionaries. In general, the more redundant the dictionary is, the
better SR result will be. Unfortunately, the computational com-
plexity will also increase as the size of dictionary increases. Many
dictionary learning algorithms thus aim at getting a compact over-
complete dictionary to represent various image patches. Never-
theless, due to the diversity of natural image patterns, it is
impossible for such compact dictionary to cover all the patterns.
As a result, the similar patterns can well be reconstructed while
the dissimilar ones cannot. Considering the fact that either similar
or dissimilar patterns, there are often many repetitive patterns
throughout an image, such nonlocal redundancy is very helpful in
preserving edge sharpness and suppressing noise in the recon-
structed images [12,14,29,30]. As a supplementary to the sparse
representation prior, in this section, we will develop a nonlocal
similarity regularization term for SR image reconstruction.

For a given image patch zj, we search for the similar patches
within a sufficiently large area around zj. Two similarity criteria
have been frequently used so far: (1) a patch zsj is selected as a
similar patch to zj if dsj ¼ j jzsj �zj j j 22rt, where t is a preset
threshold, or (2) one can select the patch if it is within the first L
(e.g., L¼15) closest patches to zj. However, they are all based on
Euclidean norm in the vector space and do not truly reflect the
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similarity between two vectors. In this paper, we use the cosine of
the angle between two vectors as the distance measurement,

dsj ¼
zsj ; zj
D E

ðj jzsj j j 2 U j jzj j j 2Þ
ð10Þ

Suppose L similar patches (zsj , s¼1,2,…,L) have been located for
zj, let zsj be the central pixel of zsj and zj be the central pixel of zj.
We can use the weighted average of zsj to predict zj,

ẑj ¼
XL

s ¼ 1
zsj c

s
j ð11Þ

where csj is the weight assigned to zsj , determined by

csj ¼
expð�dsj =hÞPL

s ¼ 1 expð�dsj =hÞ
ð12Þ

where dsj is determined by (10) and h is a controlling factor of the
weight. Considering the fact that there are plenty of repetitive
patterns throughout a MR image, the mean squared error between
the prediction and the ground truth, i.e.,

j j zj� ẑj j j 22 ¼ j j zj�
XL

s ¼ 1
zsj c

s
j j j 22 ð13Þ

should be sufficiently small. Let cj be the column vector containing
all the weights csj and patch pj be the column vector containing all
zsj . By summing the mean squared prediction error across the
whole image patch zj, we get

X
zj Azj

j j zj�
XL

s ¼ 1
zsj c

s
j j j 22 ¼

X
zj Azj

j j zj�cTj pj j j 22 ð14Þ

Since (8) calculates the sparse representation coefficients of HR
image patch z only using fidelity constraint and sparsity prior, to
incorporate the nonlocal similarity regularization, we revise (8) as
follows:

α̂¼ arg min
α

‖y�Ψlα‖22þλ‖α‖1þη
X
zj A ẑj

j j zj�cTj pj j j 22

8<
:

9=
; ð15Þ

where η is a parameter controlling the contribution of nonlocal
similarity regularization. If we define a matrix C as

Cjs ¼
csj ; ifz

s
j Apj; c

s
j Acj

0;otherwise

(
ð16Þ

By substituting (16) and z¼Ψlα into (15), we get

α̂¼ arg min
α

‖y�Ψlα‖22þλ‖α‖1þηj j ðI�CÞΨlαj j 22
� � ð17Þ

where I is an identity matrix. By introducing

yn ¼ y
0

� �
and Γ¼

I
ηðI�CÞ

" #
ð18Þ

Eq. (17) can further be simplified as

α̂¼ arg min
α

‖yn�ΓΨlα‖22þλ‖α‖1
� � ð19Þ

Please note that (19) has exactly the same form of (8), which is
also a L1-norm minimization problem.

4. Sparse derivative prior image model

Compared with the TV model, using sparsity prior or nonlocal
similarity can improve the quality of the final HR image. However, we

will demonstrate in Section 6 that sparsity prior or nonlocal
similarity based methods also produce blurry effects along strong
edges or in soft tissue areas in the reconstructed MR images. In
general, the blurry effect is caused by the average operation in these
methods. For sparsity prior based methods, overlapped HR patches
are separately reconstructed and the pixels in the overlapped regions
are averaged via various strategies to maintain compatibility between
adjacent patches, and as a result, the selected averaging strategy
largely determines the blurry degree. On the other hand, for nonlocal
similarity based methods, L similar patches (not identical patches)
are averaged to predict the central pixel of the target patch, and
certainly the higher the degree of similarity, the less blurry effect in
the final HR MR image. Since balancing the blurry effect of sparsity
prior and nonlocal similarity under a unified L1-norm minimization
framework is difficult and complicated, in this paper, we adopt the
sparse derivative prior image model to suppress blurry effects.

For lots of natural images, researchers have found that after
applying a localized, oriented, and bandpass filtering operation, the
histogram of the filtered images are exponential with high fourth-
order statistics (kurtosis) [38–40]. For example, Fig. 1(a) shows a
natural image, the histogram of the filtered image via a 1-D filter [�1,
0, 1] is shown in Fig. 1(b). We canmodel the distribution in Fig. 1(b) via

PrðxÞp exp �1
2

jxj
σ

� �α� �
ð20Þ

where σ is the standard deviation, and α is the exponent parameter.
Fig. 1(b) reveals the fact that the gradients of an image are largely
zeros, i.e., strong derivatives are sparse in a given natural image. Eq.
(20) is also known as the natural image prior when 0oαo1, for it
can model lots of natural images [38–40]. Unlike the TV model
assumes local smoothness, the natural image prior tends to encou-
rage a single strong derivative, which would appear as a sharp edge
in local regions. The natural image prior has been successively
applied in natural image noise reduction [41], compression [42],
deconvolution [43,44], and SR as well [36,37]. In [37], Tappen et al.
simultaneously used fidelity constraint and natural image prior to
perform SR. Kwang and Younghee [36] first used kernel ridge
regression and then applied natural image prior based post-
processing to suppress ringing artifacts. Nevertheless, to the authors’
best knowledge, by far there are many works reported on natural
image processing utilizing natural image prior, little similar job was
done on MR images or other medical images. To validate whether the
natural image prior can be applied to MR images, we filter a brain MR
image (shown in Fig. 2(a)) with the same 1-D filter used in Fig. 1 and
show the histogram of the filtered image in Fig. 2(b). By comparing
Fig. 1 with Fig. 2, it is clear that though the two images shown in
Fig. 1(a) and Fig. 2(a) are quite different in nature, the distributions
are almost the same, which implies that the natural image prior can
also be used in MR image processing.

In [37], Tappen et al. estimated the HR patch z by maximizing
the following joint posterior probability distribution

Prð zf gj y
� �Þ ¼ 1

C
∏

j; iAN8ðjÞ
exp � ‖zj�zi‖1

σN

� �α� �
∏
j
exp � ‖Wzj�yj‖2

σR

� �2
" #

ð21Þ

where {y} denotes the observed variables corresponding to the
pixels in LR image Y, {z} represents the latent variables corre-
sponding to the patch in HR image Z which satisfies y¼Wz, N8(j)
denotes for 8-connected neighbors of the pixel at location j, C is
the normalization constant, σN and σR are standard deviation
parameters. The first product in (21) is the natural image prior
term and the second one is the fidelity constraint term. Consider-
ing that the data fidelity constraint has already been incorporated
in the reconstruction process via the coupled two dictionaries Ψh
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andΨl, directly using (21) in our case is unsuitable. In this paper, a
modified version of (21) is thus introduced as follows

Prð zf gj ẑ
� �Þ ¼ 1

C
∏

j; iAN8ðjÞ
exp � ‖zj�zi‖1

σN

� �α� �
∏
j
exp � ‖zj� ẑj‖2

σR

� �2
" #

ð22Þ

where {ẑ} denotes the reconstructed HR patches via ẑ¼Ψhα̂ and
α̂ is the solution to (19). The motivation for the replacement of the
second product term is intuitive: we want that the final result is
not deviate far from the output yielded by (19).

To find the solution through which the joint posterior prob-
ability distribution (22) is maximized, we first convert (22) into a
factor graph (shown in Fig. 3, the complete derivation of the factor
graph can be traced back to [37]) and then use a max-sum-type
belief propagation (BP) algorithm to compute the exact maximum
posterior probability at each variable node. To facilitate the
optimization, unlike Tappen et al. did in [37] where 16 learned
interpolators are used to generate 16 h candidates for each latent
variable, we use Lþ1 patches (the source patch got by (19) plus
the corresponding L patches got in the step of searching for
nonlocal similar patches) as candidates.

Based on (22), the logarithm of the required message-passing
equations for the factor graph can be summarized as

ν½j�-jðzjÞ ¼ �1
2 ‖zj� ẑj‖2=σR
� 	2

μ½i;j�-iðziÞ ¼max
zj

μj-½i;j�ðzjÞ�
1
2

‖zj�zi‖1=σN
� 	α� �

Fig. 2. (a) A brain MR image, (b) the histogram of the filtered image via 1-D filter [�1, 0, 1].

Fig. 3. Factor graph for the optimization of (22). (a) deviation penalty term
between latent node j and observed node j, (b) natural image prior based messages
propagate from latent node j to node i.

Fig. 1. (a) A natural image, (b) the histogram of the filtered image via 1-D filter [�1, 0, 1].
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μj-½i;j�ðzjÞ ¼ ν½j�-jðzjÞþ
X

kAN8ðjÞ\i
μ½j;k�-jðzjÞ ð23Þ

where ν½j�-j calculates the message sent from constraint node [j] to
variable node zj, μ½i;j�-i represents the message sent from con-
straint node [i,j] to variable node zi, and μj-½i;j� is the message sent
from variable node j to constraint node [i,j]. In (23), μj-½i;j� and
μ½i;j�-i are natural image prior based messages propagate from
latent node j to node i, while ν½j�-j is the deviation penalty term
between latent node j and observed node j.

With Lþ1 candidate HR patches in hand, the sparse derivative
prior based post-processing is summarized in Algorithm 1.

Algorithm 1.

(1) Run BP algorithm X times using the three message-passing
equations defined in (23).

(2) For each variable node zj, select the candidate HR patch with
the highest belief.

(3) Insert the selected candidate HR patches into the correspond-
ing position to form the final output HR image.

5. The proposed method

In this section, we first discuss how to construct the coupled HR
and LR dictionaries, and then propose a new SR algorithm to
reconstruct a HR image from a single LR MR image.

5.1. Dictionary construction

In this paper, we use a modified version of the method
presented in [15,21] to construct the coupled two dictionaries
Ψh and Ψl (as illustrated in Fig. 4). Each HR training image in the
training set {Zj, j¼1,2,…, N} is first blurred and down-sampled by a
factor of q to produce the corresponding LR image set {Yj, j¼1,2,…,
N} (i.e., Yj¼WZj, where W is the degradation operator defined in
(1)). Then a upsampled set {YU

j , j¼1,2,…, N} is obtained by scaling
each image in {Yj} by the same factor q via bicubic interpolation
(i.e., YU

j ¼UqYj, where Uq is the bicubic interpolator with a
magnification factor of q). Since we want dictionary Ψh contains
useful discriminative high-frequency information, the original HR
training set {Zj} is further processed to obtain an updated HR
training set {ZU

j ; j¼1,2,…, N} via ZU
j ¼ Zj�YU

j . For dictionary Ψl,
many previous work demonstrated that building it in feature
space is more suitable than in image space [15,16,21]. Considering
the fact that the high-frequency information of the LR image is
critical for predicting the lost high-frequency information in the
target HR image, people often choose the feature space as some
kind of high-pass filtered image. For example, Yang et al. [15] used
the first- and second-order derivatives as the feature due to their
simplicity and effectiveness, Rueda et al. [21] applied a multi-scale
edge analysis, where a series of 6 different filters (Sobel kernels,
size 3�3�3 and 5�5�5, in x, y and z directions) are used. To

combine the merits of both multi-scale analysis and the first- and
second-order derivatives, in this paper, we use a multi-scale (size
3�3 and 5�5) first- and second-order derivative analysis to
extract features from the upsampled image set {YU

j }.
The eight 1-D filters used to extract multi-scale first- and

second-order derivatives are

F11 ¼ ½�1;0;1�; F12 ¼ ½�1;0;1�T ; F13 ¼ ½�1; �2; 0; 2; 1�;
F14 ¼ ½�1; �2; 0; 2; 1�T

F21 ¼ ½1; �2;1�; F22 ¼ ½1; �2;1�T ; F23 ¼ ½1; 0; �2; 0; 1�;
F24 ¼ ½1; 0; �2; 0; 1�T ð24Þ
where F1i and F2i (i¼1 to 4) are the first- and second-order
derivative filters, respectively. For each image in the upsampled
image set {YU

j }, applying these eight filters we obtain eight
different filtered images {FriY

U
j , r¼1,2 and i¼1 to 4}.

Following the preprocessing steps described hereinbefore, for
each updated HR training image ZU

j , we now have eight different
filtered LR images {FriY

U
j }. The procedure for constructing diction-

aries Ψh and Ψl are thus summarized as follows:

1. At each location d of the updated HR training image ZU
j , extract

a patch pd
Z of size m�m.

2. Extract the corresponding LR patches of the same size from the
eight filtered images {FriY

U
j , r¼1,2 and i¼1 to 4} at the same

location. Then concatenate all the eight LR patches to form a
single vector pd

Y of length 8 m2.
3. Construct the HR dictionary Ψh and a temporary LR dictionary

Ψn

l by gathering all patches {pd
Z} and {pd

Y }, respectively.
4. Apply Principal Component Analysis (PCA) to Ψn

l , build the
corresponding orthogonal transformation matrix Q by collect-
ing the eigenvectors of the covariance matrix that represents at
least 90% of the original variance.

5. Construct the LR dictionary Ψl via QΨn

l .

The reasonwhy we useΨl instead ofΨn

l as the final LR dictionary
is the redundancy of multi-scale first- and second-order derivative
analysis, since eight different filters are applied to the same image,
resulting in complementary but redundant information.

5.2. Global regularization by back-projection

Since LR dictionary Ψl is not constructed in the original LR
image space, thus the original fidelity constraint ‖y�Ψlα‖22 in the
image space must be replaced by a corresponding constraint in the
feature space, which does not demand exact equality between the
LR patch y and its estimation Ψlα. On the other hand, because no
continuity conditions are imposed along the boundaries between
patches, the reconstructed HR image Z4 should thus be further
refined to satisfy the SR model (1). To this end, we simply project
Z4 onto the solution space (i.e., Y ¼ WZ[15,21]), computing

Zn ¼ arg min
Z

‖Y�WZ‖22þξj jZ� Ẑj j 22
n o

ð25Þ

where ξ is a controlling parameter. Instead of using standard
gradient descent method to solve (25), we can iteratively calculate
the difference Y�WZ, convolve it with a back-projection kernel,
then warp back into the HR image space to update the estimated
HR image. This process can be written as [15,21,48,49]

Ztþ1 ¼ ZtþðUqðY�WZtÞÞng ð26Þ
where Zt is the estimate of the HR image after the tth iteration, Uq

the bicubic interpolator with a magnification factor of q, g is the
back-projection filter and n is the convolution operator. This
updating process is iteratively repeated until the difference
between two consecutive images is less than a given threshold.Fig. 4. Illustration of low- and high-resolution dictionary construction.
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5.3. The proposed SR algorithm

With dictionaries Ψh and Ψl, to reconstruct a HR image Z from
a given LR image Y, our proposed SR image reconstruction
algorithm (as depicted in Fig. 5) is outlined in Algorithm 2.

Algorithm 2.

1) Upsample the LR image Y using YU ¼UqY
2) Perform multi-scale first- and second-order derivative analysis

(i.e., apply the eight 1-D filters defined in (24) to YU to get eight
different filtered images {FriY

U , r¼1,2 and i¼1 to 4})
3) Divide YU into a grid of nonoverlapping patches with size of

m�m. For each patch y in the image YU, do
� Concatenate the patches of the eight filtered images {FriY

U}
that correspond to the same location of y to form a patch
vector pd

Y� Reduce the dimensionality of pd
Y via pd

Y ¼Qpd
Y� Substitute pd

Y for y in (18) and solve the optimization
problem defined in (19)

� Generate the HR patch z via z¼Ψhα̂� Insert patch z into the corresponding location of the HR
image Z4

4) Update Ẑ using Ẑ¼ ẐþYU

5) Use Algorithm 1 to update Ẑ
6) Use (26), find the image Zn, which is the closest image to Ẑ that

satisfies the global reconstruction constraint (25)
7) Output Zn as the final result of SR image reconstruction

6. Experimental results

6.1. Tested methods

To examine more comprehensively the proposed approach, we
test two versions of the proposed method: one using sparse
representation prior and nonlocal similarity (denoted by SRNL, step
5 is thus excluded from Algorithm 2); the other one using sparse
representation prior, nonlocal similarity and sparse derivative prior
(denoted by SRNINL). To examine the effect of sparse representation
prior and nonlocal similarity separately, we test the sparse repre-
sentation prior based method proposed by Rueda et al. [21]
(denoted by SRA) and nonlocal similarity based upsampling [12]
(denoted by NLUP). Table 1 clearly shows the relation among these
four methods. On the other hand, two state-of-the-art methods,
adaptive sparse domain selection and adaptive regularization
(denoted by ASAR) [16], sparse regression and natural image prior
(denoted by SRNI) [36], are also tested. Moreover, for a clear
comparison among the above mentioned six methods, we also
provide the results yielded by two baseline techniques, i.e., bicubic
interpolation (denoted by SBI) and TV prior [23] (denoted by TV).

Since SRA and NLUP are originally designed for 3D MR image
reconstruction, here we implement a 2D version of SRA and simply
draw out 2D slices from the 3D HR volume reconstructed by NLUP for
comparison. On the other hand, considering that the original NLUP
includes an additional image denoising step using MNLM3D [34]
while the other tested approaches do not, to do a fair comparison, we
exclude denoising operation from NLUP in all our experiments.

6.2. Implementation details

For dictionary construction, each HR training image is first
blurred with a Gaussian kernel of size 3�3 and standard deviation
1, then down-sampled by a factor of 2 to produce the correspond-
ing LR image. Finally, the LR image is magnified by a factor of 2 via
bicubic interpolation to produce the upsampled LR image.

For the proposed algorithm, the observed LR image Y is also
upsampled using bicubic interpolation with a magnification factor
of 2. In our experiments, the magnification factor is also set to 2,
with a patch size of 3�3 in LR image and 6�6 in HR image.
Accordingly, the image patch size m at step 3 of Algorithm 2 is also
set to 6. To search for nonlocal similar patches, the searching
radius is set to 7 which represents a 15�15 searching window and
the first 15 (i.e., L¼15) closest patches are chosen to calculate the
nonlocal similarity regularization term.

To evaluate the performance of SR algorithms we use four
different MR data sets: one dictionary dataset and three evaluation
datasets. Dictionary dataset contains twenty T1-weighted brain MR
images of normal person or patients suffering from mild cognitive
impairment (MCI) and Alzheimer’s disease, all downloaded from
Internet. For each image in the dictionary dataset, the slice thick-
ness is 1.0 mm, slice dimension is 512�512 and the pixel size is
0.469 mm�0.469 mm. The number of slices per volume varies
between 144 and 168. Three evaluation datasets are Brainweb [33]
dataset, ADNI dataset [45] and Cardiac MRI dataset [46].

To build the dictionaries, four slices per volume in the dic-
tionary dataset are selected as the original training HR images. In
order to improve the representative ability of dictionaries, we
preprocess these images by cropping out the texture and edge
regions and discarding the smooth parts. Dictionaries Ψh and Ψl

are then constructed from the preprocessed HR and LR images,
respectively. For all the tested sparse representation based meth-
ods (i.e., SRNL, SRNINL, SRA and ASAR), the size of final diction-
aries is reduced to 1024 atoms.

In this paper, two quantitative measures are used to perform
comparison between the reconstructed image A and the original
image B:

� Peak signal-to-noise ratio (PSNR):

PSNRðA;BÞ ¼ 10� log 10
2552

j jA�Bj j 22=C

 !
ð27Þ

where C is the dimension of A or B.

Fig. 5. Illustration of the proposed SR image reconstruction algorithm.

Table 1
The close related four algorithms.

Method Description

SRNINL
(the proposed method)

Use sparse representation prior,
nonlocal similarity, and sparse
derivative prior

SRNL Use sparse representation prior and
nonlocal similarity

SRA Use only sparse representation prior [21]
NLUP Use only nonlocal similarity [12]
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� Structural Similarity Index (SSIM) [32]:

SSIMðA;BÞ ¼ ð2μAμBþc1Þð2σABþc2Þ
ðμ2

Aþμ2
Bþc1Þðσ2

Aþσ2
Bþc2Þ

ð28Þ

where μA and μB are the mean value of images A and B, σA and σB

are the standard deviation of images A and B, σAB is the covariance
of A and B, c1¼(k1L)2 and c2¼(k2L)2 (L is the dynamic range,
k1¼0.01 and k2¼0.03). To evaluate the computational complexity,
the exact running time (denoted by CPU time) of each algorithm is
used. For NLUP, since it reconstructs 3D MR images, we use the
ratio of running time to the total slice number for comparison.

For the proposed SRNINL algorithm, there are total six para-
meters, i.e., the parameters σN ;σR; α; X in Algorithm 1 and λ;η in
Algorithm 2. Since it is very difficult to determine these para-
meters at the same time, a stepwise selection strategy is more
feasible and thus is adopted here [47]. Specifically, we fix the
parameters σN ;σR; α;X in Algorithm 1 in advance and try to find
the optimal values for λ and η. To this end, we choose the Basis
Pursuit Solver provided in SparseLab library [31] to solve the L1-
norm optimization problem defined in (19). We fix the first
parameter λ in advance and try to find the optimal η, then the
optimal λ is determined based on the chosen η. Finally, based on
the chosen λ and η, the four parameters σN ;σR; α; X in Algorithm 1
are determined using the same strategy. Fig. 6 shows the perfor-
mance of SRNINL (in PSNR) over the variation of one parameter
with other parameters fixed. From Fig. 6, we empirically set
λ¼0.01, η¼0.18, α¼ 0:8, σR ¼ 1,σN ¼ 100, and X¼8.

All the experiments are implemented in MATLAB R2010b,
running on a personal computer with Intel(R) Core(TM)2 Duo
CPU P8700 @ 2.53 GHz, 4 GB memory.

6.3. Tests on Brainweb dataset

In this section, we use T1-weighted normal brain MR images
with a slice dimension of 181�217 (pixel size is 1 mm�1 mm)
and an interslice distance of 1 mm, generated by Brainweb [33]
digital brain phantom.

6.3.1. SR results on clean data
We test the clean (here clean means with 0% intensity non-

uniformity and 0% noise) data first. We randomly pick out 10
slices, downsample them by a factor of two to generate the
corresponding LR images, and then perform SR image reconstruc-
tion using SRNL, SRNINL, SBI, TV, SRA, ASAR, and SRNI. For NLUP,
we downsample the original volume data by a factor of two to get
the LR volume data and pick out the corresponding reconstructed
2D HR slices for comparison. Fig. 7 presents one of the recon-
structed slices by all the methods. From Fig. 7, we can see that
comparing with the result got by SRNL, TV and SRA produce jaggy
artifacts and NLUP produces more blurry edges in the center
(marked by the red box). TV and SRA also blur the details on the
bottom left (marked by the white box). The results got by SRNI and
ASAR are as better as SRNL. Nevertheless, by jointly using sparse
representation prior, nonlocal similarity and sparse derivative
prior, the proposed SRNINL algorithm produces the best result
among all the tested methods. The averages of two quantitative
measures across 10 slices are reported in Table 2. Note that the two
quantitative measures show good consistence with the visual
results in Fig. 7. To compare the computational complexity,
Table 3 lists the corresponding CPU time. Except SBI, the fastest
algorithm is NLUP. This is mainly because NLUP is an iterative
filtering process that converges very fast. Its main drawback is that
it must reconstruct the whole 3D image completely. The actual
running time of NLUP in this case is 1.106 s�180 slices¼199.08 s.

Since the basic principle of SRA and SRNL is the same, the
computational complexity of SRA is comparable with that of SRNL.
By adding a filtering operation to SRNL, the resulted SRNINL is a
little bit slower than SRNL, but still faster than ASAR.

6.3.2. SR results on noisy data
In the second test, we test the algorithms’ robustness to noise.

We download the noisy data (noise: 9%, intensity non-uniformity:
0%) and repeat the same procedure as we did in the first
experiment. Fig. 8 presents one of the reconstructed slices by all
the methods. From Fig. 8, we see that unlike methods using either
local smooth assumption (e.g., TV) or nonlocal similarity (e.g.,
NLUP, SRNL, ASAR, SRNINL) to suppress noise, SRA and SRNI are
more sensitive to noise and there are many obvious noise-caused
artifacts in the center. On the other hand, NLUP, ASAR, and SRNL
produce blurry details in the center (marked by the red box), and
the structures on the bottom left (marked by the white box)
produced by NLUP and ASAR is over-smoothed. In contrast, the
proposed SRNINL shows good robustness to noise: not only the
noise is effectively suppressed, but also the weak edges are well
reconstructed. This is mainly because the noise can be more
effectively removed and the edges can be better preserved via
jointly using sparse representation prior, nonlocal similarity and
sparse derivative prior. Table 4 lists the corresponding average
quantitative measures. An interesting observation is that, although
SRNINL generates visually more appealing image than NLUP and
ASAR do, its quantitative measure SSIM is actually lower than that
of NLUP and ASAR. Since intensive noise is included in this
experiment and the PSNR of SRNINL is much higher than that of
other methods, we believe that SSIM may not be a good measure
under noisy cases (as we will demonstrate later in other experi-
ments that the SSIM of SRNINL on other noiseless data is the best
among all the test methods).

6.3.3. Effect of intensity non-uniformity
To study the effect of intensity non-uniformity, we download

the data with 40% intensity non-uniformity (0% noise) and repeat
the same procedure as we did in the previous two experiments.
Fig. 9 presents the reconstructed results of the same slice in Fig. 7
by all the tested methods and Table 5 lists the corresponding
quantitative measures. By comparing Fig. 9 with Fig. 7, as well as
Table 5 with Table 2, we can easily see that

1) Intensity non-uniformity makes almost invisible structure
changes to the original clean slice.

2) The performance of SBI, TV, SRA, SRNL, ASAR, SRNI and SRNINL are
almost the same as they are in Section 6.3.1, since they all build a
2D HR image from the given 2D LR image. Moreover, SRNINL still
produces the best result among all the tested methods.

3) The performance of NLUP degrades dramatically in Fig. 9 and
Table 5. This is mainly because that though intensity non-
uniformity does not make great visible structure changes inside
slice plane, it causes interslice structure changes, which will
hamper NLUP to extract useful sub-pixel information via
interslice correspondence.

6.3.4. SR results under large magnification factor
In the previous experiments, the scaling factor is fixed to 2.

However, it could be interesting to test the algorithms’ performance
under a larger magnification factor, since more HR patch patterns
are associated to a single LR patch. To this end, we set the scaling
factor to 4, with a patch size of 3�3 in LR image and 12�12 in HR
image. For SRNL, SRNINL, and SRA, we do not use the LR images
downsampled by a factor of 4 to construct a new dictionary Ψl

as Rueda et al. did in [21], we instead adopt the same dictionaries
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Fig. 6. Illusion of the performance of SRNINL (in PSNR) over the variation of λ; η, σN ; σR ; α; and X.
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Fig. 7. Comparison of SR results (magnified by a factor of 2). Top row: original, SBI and TV. Middle row: NLUP, SRA and SRNL. Bottom row: ASAR, SRNI and SRNINL. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 2
The average of PSNR and SSIM on clean data (magnified by a factor of 2).

SBI TV NLUP SRA SRNL ASAR SRNI SRNINL

PSNR 33.918 37.496 41.292 39.559 40.144 39.454 39.363 43.033
SSIM 0.9088 0.9702 0.9862 0.9774 0.9833 0.9766 0.9802 0.9952

Table 3
The average of CPU time on clean data (seconds).

SBI TV NLUP SRA SRNL ASAR SRNI SRNINL

CPU time �2 0.003 5.726 1.106 107.371 104.974 138.945 4.904 107.805
�4 0.004 133.967 0.519 145.578 123.318 150.782 15.478 134.209
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used in the previous experiments and magnify a LR image by two
consecutive steps with a magnification of 2 for each step. For TV,
NLUP, ASAR, and SRNI, we simply magnify the LR image by a factor
of 4 since the codes provided by the authors are capable of
executing a magnification of 4 directly. Fig. 10 presents one of the
reconstructed slices by all the methods and the corresponding
numeric results are reported in Table 6. From Fig. 10, we can still

see that the proposed SRNINL algorithm produces the best result
among all the tested algorithms. However, Table 6 shows that the
PSNR of SRNINL is lower than that of SRNL, though it generates
visually more appealing image than SRNL does. This is because for
the proposed SRNINL algorithm, an extra post-filtering operation (if
we add Algorithm 1, the sparse derivative prior based post-filtering
operation into SRNL, it turns out to be SRNINL) may degrade

Fig. 8. Comparison of SR results on noisy data (magnified by a factor of 2). Top row: original, SBI and TV. Middle row: NLUP, SRA and SRNL. Bottom row: ASAR, SRNI and
SRNINL. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 4
The average of PSNR and SSIM on data with 9% noise (magnified by a factor of 2).

SBI TV NLUP SRA SRNL ASAR SRNI SRNINL

PSNR 30.205 30.694 30.841 30.895 30.881 30.847 30.944 32.281
SSIM 0.6883 0.7124 0.7529 0.6831 0.7438 0.7503 0.6862 0.7455
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pixel-by-pixel based quantitative measures (e.g., PSNR) under large
magnification factors. However, the results in this paper demon-
strate that pixel-by-pixel based quantitative measures (e.g., PSNR)
may work well in noisy cases, SSIM produces more reliable statistics
for noiseless images. The corresponding CPU time of each method is
also listed in Table 3 for comparison. Except NLUP, all the other
methods need more time to reconstruct the final HR image since

more unknown pixels are needed to be calculated when magnifica-
tion factor increases from two to four. The reason why NLUP spends
less time for large magnification factors is that it reaches conver-
gence very quickly when there is no sufficient information among
neighboring pixels (the larger magnification factor, the less corela-
tion among neighboring pixels). On the other hand, the proposed
SRNINL is still faster than ASAR.

Fig. 9. Comparison of SR results on intensity inhomogeneous data (magnified by a factor of 2). Top row: original, SBI and TV. Middle row: NLUP, SRA and SRNL. Bottom row:
ASAR, SRNI and SRNINL.

Table 5
The average of PSNR and SSIM on data with 40% intensity non-uniformity (magnified by a factor of 2).

SBI TV NLUP SRA SRNL ASAR SRNI SRNINL

PSNR 34.1714 38.2919 34.4714 40.2691 40.2734 40.1395 40.2795 42.1689
SSIM 0.9108 0.9711 0.9118 0.9771 0.9812 0.9757 0.9809 0.9930
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6.4. Tests on ADNI dataset

The data used in this section were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database [45]. The Principal
Investigator of ADNI is Michael W.Weiner, MD, VAMedical Center and
University of California. ADNI is the result of efforts of many
coinvestigators from a broad range of academic institutions and

private corporations. The primary goal of ADNI has been to test
whether serial MR imaging, positron emission tomography (PET),
other biological markers, and clinical and neuropsychological assess-
ment can be combined to measure the progression of mild cognitive
impairment (MCI) and early Alzheimer’s disease (AD).

We download the data and repeat the same procedure as we
did in the previous experiments. Fig. 11 presents one of the

Fig. 10. Comparison of SR results (magnified by a factor of 4). Top row: original, SBI and TV. Middle row: NLUP, SRA and SRNL. Bottom row: ASAR, SRNI and SRNINL.

Table 6
The average of PSNR and SSIM on clean data (magnified by a factor of 4).

SBI TV NLUP SRA SRNL ASAR SRNI SRNINL

PSNR 31.785 33.170 33.319 33.211 34.110 33.459 33.250 34.079
SSIM 0.7182 0.8614 0.8652 0.8581 0.8861 0.8640 0.8565 0.9096
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reconstructed slices by all the methods and the corresponding
numeric results are reported in Table 7. From Fig. 11, we can see
that for the down-right area (marked by the red box), SRA and
ASAR produce the most blurry results. By incorporating the
nonlocal similarity information properly, SRNL and NLUP produce
more clear tissue structures. Though SRNI produces better result
than SRNL does, by jointly using sparse representation prior,
nonlocal similarity and sparse derivative prior, the proposed
SRNINL recovers more fine details. Note that in Table 7 the
quantitative measures of NLUP are higher than that of SRNI, which
is in contradiction with the visual perception shown in Fig. 11.

6.5. Tests on Cardiac MRI dataset

The Cardiac MRI dataset [46] contains 4D MR images acquired
from 33 subjects. Each subject’s sequence consists of 20 frames and
8–15 slices along the long axis, for a total of 7980 images. Since the
original data contains time axis, we simply choose the volume data by
setting t to zero and repeat the same procedure as we did in the
previous experiments. Fig. 12 presents one of the reconstructed slices
by all the methods and the corresponding numeric results are

reported in Table 8. From Fig. 12, we can see that for the tissues
marked by the small white and red boxes, SRA and ASAR still produce
the most blurry results. On the other hand, SRNL and NLUP produce
more clear tissue structures since nonlocal similarity information is
properly incorporated into the reconstruction process. The result
yielded by SRNI is slightly better than that of SRNL. Nevertheless,
our proposed SRNINL still produces the best tissue structures among
all the tested methods. Again, as we found in Table 7, though SRNI
generates visually more appealing image than NLUP does, in Table 8,
the quantitative measures of NLUP are higher than that of SRNI.

7. Discussion

In this paper, we propose a new algorithm for reconstructing a
HR image from a single LR MR image by jointly using sparse
representation prior, nonlocal similarity, and sparse derivative
prior. The proposed method has been demonstrated to achieve
much better results than many state-of-the-art algorithms in
terms of both quantitative measures and visual perception. Our
main contribution is threefold: (1) the use of multi-scale first- and

Fig. 11. Comparison of SR results on ADNI dataset (magnified by a factor of 2). Top row: original, SBI and TV. Middle row: NLUP, SRA and SRNL. Bottom row: ASAR, SRNI and
SRNINL. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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second-order derivative analysis to estimate the missing high-
frequency information, (2) the joint use of sparse representation
and nonlocal similarity under a unified L1-norm minimization
framework, and (3) the use of sparse derivative prior based post-
processing in MR image SR reconstruction.

The use of multi-scale edge analysis to estimate high-frequency
information was first proposed by Rueda et al. [21] based on two
considerations: (1) compared with low-frequency information,
high-frequency information has more influence on the reconstruc-
tion of sharp edges, and (2) image coherence and regularity are also

Table 7
The average of PSNR and SSIM on ADNI dataset (magnified by a factor of 2).

SBI TV NLUP SRA SRNL ASAR SRNI SRNINL

PSNR 35.6354 35.7876 36.4898 35.6288 35.7580 35.6512 35.8142 37.7246
SSIM 0.8929 0.8983 0.9199 0.8860 0.9050 0.8871 0.9056 0.9281

Fig. 12. Comparison of SR results on Cardiac MRI dataset (magnified by a factor of 2). Top row: original, SBI and TV. Middle row: NLUP, SRA and SRNL. Bottom row: ASAR,
SRNI and SRNINL. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 8
The average of PSNR and SSIM on Cardiac MRI dataset (magnified by a factor of 2).

SBI TV NLUP SRA SRNL ASAR SRNI SRNINL

PSNR 37.4095 37.5550 38.4542 37.6537 37.8962 37.7649 37.9704 39.6499
SSIM 0.9303 0.9350 0.9528 0.9224 0.9400 0.9230 0.9408 0.9703
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preserved via multi-scale analysis to some extent, which makes
patch overlapping unnecessary. However, only multi-scale first-
order derivative analysis was applied in [21]. Since most edges in
images are often gradual transitions from one intensity to another,
using first-order derivative one would usually get a curve with
rising gradient magnitude, and then a falling gradient magnitude.
Extracting the ideal edge is thus a matter of finding this curve with
optimal gradient. For patch-based SR image reconstruction, how-
ever, such curve may pass through many neighboring patches, the
exact location of the edges would probably be lost for these
neighboring patches are separately reconstructed. Second-order
derivate, on the other hand, could be used to extract optimal edge
location by finding where it is zero. We must point out that though
only the simplest second-order derivative analysis is used in this
paper, using other more reliable ones, e.g., Laplacian operator, Marr–
Hildreth operator, is also possible.

Nonlocal similarity refers to the fact that the patches with similar
patterns can be spatially far from each other, we can collect them in
the whole image and process them simultaneously for various
purposes, e.g., image denoising [29,35], deblurring [16,34], and SR
[12,30]. In this paper, by incorporating the nonlocal similarity
regularization into the process of MR image SR reconstruction, we
got better results than only using either nonlocal similarity or sparse
representation prior. Moreover, thanks for the averaging operation
of similar patches across the image, the proposed method is more
robust to noise than TV, SRA and SRNI. Finally, the proposed SRNINL
algorithm handles nonlocal similarity information in pixel domain,
how about coding nonlocal similarity via sparse representation and
including it in the same unified SR image reconstruction framework,
this is one of our future research directions.

Though natural image prior has been proven to be effective in
various natural image processing tasks, in this paper, we validate
that it is also applicable to MR image processing. In fact, we can
see that a MR image consists mainly of zero gradient regions
interspersed with occasional strong gradient transitions. By com-
paring the results yielded by SRNL and SRNINL, it is easy to find
that a sharp edge is preferred over a blurry one in the final output
when applying the natural image prior based post-processing
operation. However, a more direct and elegant approach for jointly
using sparse representation prior, nonlocal similarity, and sparse
derivative prior is to incorporate a sparse derivative prior based
regularization term into (19) as follows

α̂¼ arg min
α

‖yn�ΓΨlα‖22þλ‖α‖1þζ DnΨlα


 

=σ� 	αn o

ð29Þ

where D is the desired localized, oriented, and bandpass filter, and
ζ is a parameter controlling the contribution of sparse derivative
prior. Unfortunately, for sparse derivative prior, the exponent
parameter α must satisfy 0oαo1, which makes solving (29) via
directly applying standard L1-norm optimization techniques
impossible. One of our future research directions will focus on
finding an efficient algorithm to solve (29).
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